30–60 W DC/DC Power Modules 48 V Input Series

- Efficiency typ 86% (5 V) at full load
- Low profile 11.0 mm (0.43 in.)
- 1,500 V dc isolation voltage (duals = 1,000 V dc)
- *MTBF* >200 years at +75°C case temperature
- Rugged mechanical design and efficient thermal management, max +100 °C case temperature
- EMI measured according to EN 55 022 and FCC part 15J

The PKG series of DC/DC Power Modules are members of the EriPowerTM range of low profile DC/DC converters for distributed power architectures in 48/60 VDC power systems. They provide up to 60W in single and dual output versions. Utilizing the standard EriPowerTM PKA/PKE pin-out with an even smaller footprint, the power density is 20 W/cu.in. The PKG units can be used as on-board distributed power modules, or serve as building blocks for more centralized power boards. The high efficiency makes it possible to operate over a wide temperature range without any extra heatsinks. At forced convection cooling >200 lfm (1 m/s), the PKG units can deliver full power without heatsinks up to +65°C ambient. With derated output power it can also operate in

temperature controlled environments with non-forced convection cooling. By adding external heatsinking, the temperature range can be extended even further. Thanks to its peak power capa-bility, the PKG series is ideal for applications where max power is only required during short durations e.g. in disc drives. The PKG series uses ceramic sub-strates with plated copper in order to achieve good thermal management, low voltage drops, and a high efficiency. These products are manufactured using highly automated manufacturing lines with a world-class quality commitment and a five-year warranty. Ericsson Microelectronics AB has been an ISO 9001 certified supplier since 1991. For a complete product program please reference the back cover.

ERICSSON 📕

General

Absolute Maximum Ratings

Charac	teristics	min	max	Unit
T _C	Case temperature @ max output power	-45	+100	°C
T _S	Storage temperature	-55	+125	°C
VI	Input voltage	-0.5	+80	Vdc
V _{ISO}	Isolation voltage single output (input to output test voltage) dual output	1,500 1,000		Vdc
V _{RC}	Remote control voltage pin 1	-10	+10	Vdc
Vadj	Output adjust voltage pin 10	-10	+10	Vdc

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Input T_C < T_{C max}

Charac	teristics	Conditions	min	typ	max	Unit
VI	Input voltage range ¹⁾		38		72	v
Vioff	Turn-off input voltage	(See Operating Information)		32		V
Vion	Turn-on input voltage	(See Operating Information)		33		v
r _{Irush}	Equivalent inrush current resistance			30		mΩ
CI	Input capacitance			1.8		μF
Pli	Input idling power	I _O =0,T _C =-30+90°C		1.5	2.0	w
P _{RC}	Input stand-by current	$V_I = 53 V$, $T_C = +25 °C$ RC connected to pin 4		1.0		W

Environmental Characteristics

Characteristics		Test procedure & cond	itions
Vibration (Sinusoidal)	IEC 68-2-6 F _c	Frequency Amplitude Acceleration Number of cycles	10500 Hz 0.75 mm 10 g 10 in each axis
Random vibration	IEC 68-2-34 Ed	Frequency Acceleration density spectrum Duration Reproducability	10500 Hz 0.5 g ² /Hz 10 min in 3 directions medium (IEC 62-2-36)
Shock (Half sinus)	IEC 68-2-27 E _a	Peak acceleration Shock duration	200 g 3 ms
Temperature change	IEC 68-2-14 N _a	Temperature Number of cycles	–40°C…+125°C 100
Accelerated damp heat	IEC 68-2-3 C _a with bias	Temperature Humidity Duration	85°C 85% RH 1000 hours
Solder resistability	IEC 68-2-20 T _b 1A	Temperature, solder Duration	260°C 1013 s
Resistance to cleaning solvents	IEC 68-2-45 XA Method 1	Water Isopropyl alcohol Terpens Method	+55 ±5°C +35 ±5°C +35 ±5°C with rubbing

Safety

The PKG 4000 I Series DC/DC power modules are designed in accordance with EN 60 950 Safety of information technology equipment including electrical business equipment and certified by SEMKO. The isolation is an operational insulation in accordance with EN 60 950.

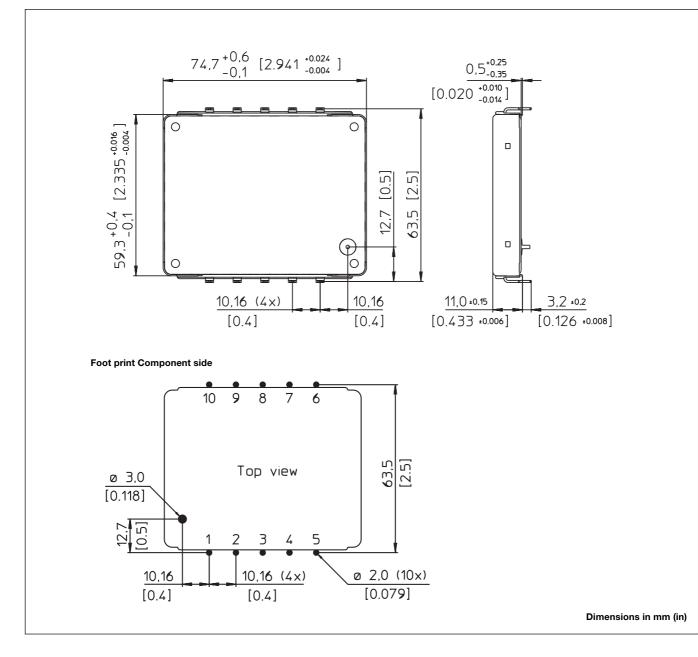
The PKG DC/DC power modules are recognized by UL and meet the applicable requirements in UL 1950 *Safety of information technology equipment*, the applicable Canadian safety requirements and UL 1012 *Standard for power supplies*.

The DC/DC power module shall be installed in an end-use equipment and is intended to be supplied by isolated secondary circuitry and shall be installed in compliance with the requirements of the ultimate application. When the supply to the DC/DC power module meets all the requirements for SELV (<60Vdc), the output is considered to remain within SELV limits (level 3). If connected to a 60 V DC power system reinforced insulation must be provided in the power supply that isolates the input from the ac mains. Single fault testing in the power supply must be performed in combination with the DC/DC power module to demonstrate that the output meets the requirement for SELV. One pole of the input and one pole of the output is to be grounded or both are to be kept floating.

The terminal pins are only intended for connection to mating connectors of internal wiring inside the end-use equipment.

These DC/DC power modules may be used in telephone equipment in accordance with paragraph 34 A.1 of UL 1459 (Standard for Telephone Equipment, second edition).

The isolation voltage is a galvanic isolation and is verified in an electric strength test. Test voltage between input and output and between case and output is 1,500 V dc(duals = 1,000 V dc) for 60 s. In production the test duration may be decreased to 1 s.


The capacitor between input and output has a value of 4.7 nF (duals = 22 nF) and the leakage current is less than $1\mu A @ 50$ Vdc.

Flammability ratings of the terminal support and internal plastic construction details meets UL 94V-0.

Note:

1)The input voltage range 38...72 V meets the requirements in the European Telecom Standard prETS 300 132-2 for Normal input voltage range in 48 V and 60 V DC power systems, -40.5...-57.0 V and -50.0...-72.0 V respectively. At input voltages exceeding 72 V (abnormal voltage) the power loss will be higher than at normal input voltage and T_C must be limited to max +90 °C. Absolute max continuous input voltage is 80 V dc. Output characteristics will be marginally affected at input voltages exceeding 72 V.

Mechanical Data

Connections

Pin	Designation	Function
1	RC	Remote control. To turn-on and turn-off the output and to set the turn-off input voltage threshold.
2	TOA	Turn-off input voltage adjust (see Operating information).
3	+In	Positive input. Connected to case.
4	–In	Negative input.
5	NC	Not connected.
6	–Out 2	Negative output 2.
7	+Out 2	Positive output 2.
8	–Out 1	Negative output 1.
9	+Out 1	Positive output 1.
10	V _{adj}	Output voltage adjust.

Weight

Maximum 75 g (2.66 oz).

Case

Blue anodized aluminium casing with embedded tin plated copper pins.

Thermal Data

Two-parameter model

Power dissipation is generated in the components mounted on the ceramic substrate. The thermal properties of the PKG power module is determined by thermal conduction in the connected pins and thermal convection from the substrate via the case.

The two-parameter model characterizes the thermal properties of the PKG power module and the equation below can be used for thermal design purposes if detailed information is needed. The values are given for a module mounted on a printed board assembly (PBA).

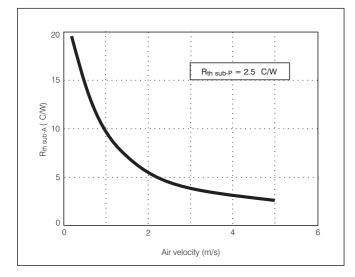
Note that the thermal resistance between the substrate and the air, $R_{th \ sub-A}$ is strongly dependent on the air velocity.

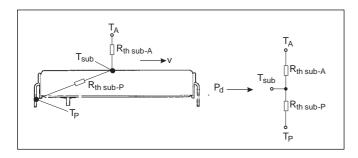
 $\begin{array}{l} T_{sub} = P_d \times R_{th \ sub-P} \times R_{th \ sub-A} / (R_{th \ sub-P} + R_{th \ sub-A}) + (T_P \! - \! T_A) \\ \times R_{th \ sub-A} / (R_{th \ sub-P} + R_{th \ sub-A}) + T_A \end{array}$

Where:

 $\begin{array}{ll} P_d & : \text{dissipated power, calculated as } P_O \times (1/\eta\text{-}1) \\ T_{sub} & : \text{max average substrate temperature, } \approx T_{Cmax} \end{array}$

T_A : ambient air temperature at the lower side of the power module


 T_P : average pin temperature at the PB solder joint

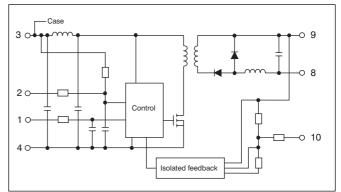

 $R_{th \; sub-P}\;$: thermal resistance from T_{sub} to the pins

 $R_{th \, sub\text{-}A}\,$: thermal resistance from T_{sub} to T_A

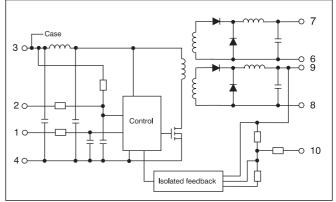
v : velocity of ambient air.

Air velocity in free convection is 0.2–0.3 m/s (40-60 lfm).

Over Temperature Protection (OTP)


The PKG DC/DC power modules have an internal over temperature protection circuit. If the case temperature exceeds min +115 °C the power module will go in to OTP-mode. As long as the case temperature exceeds min +115 °C the power module will operate in OTP-mode.

During OTP-mode the output voltage pulsates between zero and nominal output voltage, which reduces the power loss inside the power module. The PKG DC/DC power module will automatically resume normal operation when the temperature decreases below min +115 °C.


Electrical Data

Fundamental circuit diagrams

Single output

Dual output

PKG 4310 PI

 $T_C = -30...+90^{\circ}C$, $V_I = 38...72V$ unless otherwise specified.

Output

0.		O an alitic ma			Output 1		11
Charact	teristics	Conditions		min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	accuracy $T_{C} = +25 ^{\circ}C, I_{O} = 14.5 ^{\circ}A, V_{I} = 53 ^{\circ}V$ 2.07 2.10 2.13 ist range ¹) Ist range ¹ Ist range ¹ 1.90 2.30 age and Long term drift included $I_{O} = 0.1 \dots 1.0 \times I_{O}$ max 2.03 2.17 ge $I_{O} = 0.4$ $S_{I} = 3860 ^{\circ}V$ 2 3.5		v			
•01	Output adjust range ¹⁾			1.90		2.30	V
Vo	Output voltage tolerance band		$I_O \!=\! 0.1 \dots 1.0 \times I_O \max$	2.03		2.17	v
	Idling voltage	I _O =0 A	•			3.5	V
	Line regulation		V _I = 3860 V		2		mV
		IO=IOmax	V _I = 5072 V		2		
	Load regulation	$I_0 = 0.1 \dots 1.0 \times I_0 m$	ax, V _I = 53 V		30		mV
t _{tr}	Load transient recovery time	l₀=0.1 1.0 × l₀m	av VI – 53 V		100		μS
V _{tr}	Load transient voltage	load step = $0.5 \times I_C$			+130		mV
v _{tr}	Load transient voltage				-210		mV
T _{coeff}	Temperature coefficient ²⁾	I _O =I _O max, T _C <t<sub>C m</t<sub>	ax	see PKG	4310 PI Temperatur	re characteristics	
t _r	Ramp-up time	I _O =	$0.1 \dots 0.9 \times V_O$		10		ms
ts	Start-up time	$\begin{array}{l} 0.1 \dots 1.0 \times I_O \text{max} \\ V_I = 53 \text{V} \end{array}$	From V _I connection to V _O = 0.9 \times V _{Oi}		30		ms
lo	Output current			0		14.5	А
Pomax	Max output power ³⁾	Calculated value			30		w
l _{lim}	Current limiting threshold	T _C < T _C max		16.2			A
I _{sc}	Short circuit current	V _O =0.2 0.5 V, T,	₄=25°C	18			A
V _O ac	Output ripple	I _O =I _O max	20 Hz5 MHz		60	100	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 Vp	ve, 1 Vp-p, V _I = 53 V _{p-p/V_{O p-p}))}	56			dB
OVP	Over voltage protection	I _O > 0.1 × I _O max			2.6		v

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.
 See also Typical Characteristics, Power derating.

Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _{Omax} , V _I = 53 V		75		%
Pd	Power dissipation	I _O = I _O max, V _I = 53 V		10		w

PKG 4319 PI

T_C = –30…+90°C, V_I = 38 …72V unless otherwise specified.

Output

					Output 1		
Charact	teristics	Conditions		min	typ	max	Unit
Vo tolerance band included Included Included Idling voltage $I_0 = 0 \text{ A}$ $I_0 = 0 \text{ A}$ Line regulation $I_0 = I_0 \text{max}$ $\frac{V_1}{V_1}$ Load regulation $I_0 = 0.1 \dots 1.0 \times I_0 \text{max}$, V_1 t_{tr} Load transient recovery time $I_0 = 0.1 \dots 1.0 \times I_0 \text{max}$, V_1 V_{tr} Load transient voltage $I_0 = 0.1 \dots 1.0 \times I_0 \text{max}$, V_1 T_{coeff} Temperature coefficient ²) $I_0 = I_0 \text{max}$, $T_C < T_C \text{ max}$ t_r Ramp-up time $I_0 =$ 0.1	54 V - 53 V	2.49	2.51	2.53	v		
VOI	Output adjust range ¹⁾		, vi = 30 v	2.25		2.75	V
Vo			$I_0 = 0.1 \dots 1.0 \times I_0 max$	2.43		2.57	v
	Idling voltage	I _O =0 A	1			2.75 2.57 3.0	V
			V ₁ = 3860 V		5		- mV
		IO=IOmax	V _I = 5072 V		5		
	Load regulation	$I_0 = 0.1 \dots 1.0 \times I_0 m$	ax, V _I = 53 V	20			mV
t _{tr}		lo=0.11.0 × lom	av. Vi = 53 V		100		μS
Vtr	Load transient voltage				+250		mV
vtr	Load transient voltage				-500		mV
T _{coeff}	Temperature coefficient ²⁾	I _O =I _O max, T _C <t<sub>C m</t<sub>	ax	see PKG	4319 PI Temperatu	re characteristics	
t _r	Ramp-up time	I _O =	$0.1 \dots 0.9 \times V_O$		30		ms
ts	Start-up time	$\begin{array}{l} 0.1 \dots 1.0 \times I_{O} \text{max} \\ V_{I} = 53 \text{ V} \end{array}$	From V _I connection to V _O = 0.9 \times V _{Oi}		60		ms
lo	Output current			0		15	A
P _O max	Max output power ³⁾	Calculated value			38		w
l _{lim}	Current limiting threshold	T _C < T _C max		15.3			A
I _{sc}	Short circuit current	V _O =0.2 0.5 V, T,	_A =25°C, R _{SC} >25 mΩ	22		A	
Voac	Output ripple	I _O =I _O max	20 Hz5 MHz		60	100	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V _P	ve, 1 V _P -p, V _I = 53 V _{P-p} /V _{Op-p}))	47			dB
OVP	Over voltage protection	I _O > 0.1 × I _O max			3.5		V

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.
 See also Typical Characteristics, Power derating.

Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _O max, V _I = 53 V		78		%
Pd	Power dissipation	I _O = I _O max, V _I = 53 V		10.5		w

PKG 4410 PI

 $T_C = -30...+90^{\circ}C$, $V_I = 38...72V$ unless otherwise specified.

Output

0		Ormalitiene			Output 1		11
Charact	teristics	Conditions		min	min typ max		Unit
Voi	Output voltage initial setting and accuracy	T _C =+25°C, l _O =14	A V - 53 V	3.28	3.30	3.32	v
VOi	Output adjust range ¹⁾		A, VI = 33 V	2.80		3.65	V
Vo	Output voltage tolerance band	Long term drift included	$I_O {=} 0.1 \dots 1.0 \times I_O max$	3.10		3.40	v
	Idling voltage	I _O = 0 A				4.0	V
	Line regulation	I _O =I _O max	V ₁ = 3860 V		3		mV
		IO=IOmax	V _I = 5072 V		3		IIIV
	Load regulation	$I_O {=} 0.1 \dots 1.0 \times I_O m$	ax, V _I = 53 V		35		mV
t _{tr}	Load transient recovery time	I _O =0.1 1.0 × I _O m	av. VI = 53 V		100		μS
V _{tr}	Load transient voltage	load step = $0.5 \times I_{C}$			+200		mV
vtr	Load transient voltage				-330		mV
T _{coeff}	Temperature coefficient ²⁾	$I_O = I_O max, T_C < T_C m$	ax	see PKG	4410 PI Temperatu	re characteristics	
t _r	Ramp-up time	I _O =	$0.1 \dots 0.9 \times V_O$	10			ms
ts	Start-up time	$0.11.0 \times I_{O} \max V_{I} = 53 V$	From VI connection to V_0 = 0.9 \times V_0i		30		ms
lo	Output current			0		14	A
Pomax	Max output power ³⁾	Calculated value			46		w
l _{lim}	Current limiting threshold	T _C < T _C max		15.4			A
l _{sc}	Short circuit current	$V_0 = 0.20.5 V, T_A$	=25°C	18			A
VOac	Output ripple	I _O =I _O max	20 Hz 5 MHz		60	100	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 Vp		53			dB
OVP	Over voltage protection	I _O > 0.1 × I _O max			4		V

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.
 See also Typical Characteristics, Power derating.

Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _O max, V _I = 53 V		81		%
Pd	Power dissipation	I _O = I _O max, V _I = 53 V		11		w

PKG 4611 PI

 $T_C = -30...+90^{\circ}C$, $V_I = 38...72V$ unless otherwise specified.

Output

0.		Ormalitions			Output 1		11
Charact	teristics	Conditions		min	typ	max	Unit
Ma.	Output voltage initial setting and accuracy	T _C = +25°C, I _O = 12	2 A V - 53 V	min typ max 5.12 5.15 5.18 4.65 5.65 5.00 5.20 5.00 5.20 5.00 5.6 5.0 5.6 5.0 5.6 100 -500 5.6 5.6 10 30 0 12 60 12.1 60 100	v		
$\begin{array}{c} \\ V_{Oi} \\ \hline \\ V_{O} \\ \hline \\ V_{O} \\ \hline \\ \\ V_{I} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Output adjust range ¹⁾	- 10 - +25 0, 10 - 12	, vi = 33 v	4.65		5.65	V
Vo	Output voltage tolerance band	Long term drift included	$I_O = 0.1 \dots 1.0 \times I_O max$	5.00		5.20	v
	Idling voltage	I _O =0 A		min typ max Unit 3 V 5.12 5.15 5.18 V 4.65 5.65 V 1.0 × Iomax 5.00 5.20 V 1.0 × Iomax 5.00 5.20 V 60 V 5.66 V 60 V 5.66 V 60 V 5.6 V 72 V 5 mV 3V 50 mV 3V 10 ms (connection 0.9 × Vol 30 ms 0 12 A 60 W A 12.1 A A 0.5 MHz	V		
	Line regulation	$I_0 = I_0 max$	V _I = 3860 V		5		mV
		IO=IOmax	V _I = 5072 V		5		
	Load regulation	$I_O \!=\! 0.1 \ldots 1.0 \times I_O m$	ax, V _I = 53 V		50		mV
t _{tr}	Load transient recovery time	— I _O =0.11.0 × Ioma	v VI – 53 V		100		μS
Vtr	Load transient voltage	load step = $0.5 \times I_C$			+350		mV
v _{tr}	Load transient voltage				-500		mV
T _{coeff}	Temperature coefficient ²⁾	$I_O = I_O max, T_C < T_C m$	ax	see PKG	4611 PI Temperatur	re characteristics	
t _r	Ramp-up time	I _O =	$0.1\ldots 0.9\times V_O$		10		ms
ts	Start-up time	$0.11.0 \times I_0 max$ V ₁ = 53 V	From V _I connection to V _O = $0.9 \times V_{Oi}$		30		ms
lo	Output current		•	0		12	A
Pomax	Max output power ³⁾	Calculated value			60		W
l _{lim}	Current limiting threshold	T _C < T _C max		12.1			A
I _{sc}	Short circuit current	$V_0 = 0.20.5 V, T_A$	=25°C	17		A	
VOac	Output ripple	I _O =I _O max	20 Hz 5 MHz		60	100	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 Vp	ve, 1 Vp-p, V _I = 53 V _{b-p} /V _{Op-p}))	50			dB
OVP	Over voltage protection	I _O > 0.1 × I _O max			6		V

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.
 See also Typical Characteristics, Power derating.

Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _O max, V _I = 53 V		86		%
Pd	Power dissipation	I _O = I _O max, V _I = 53 V		10		W

PKG 4617 PIOA

 $T_C = -30...+90^{\circ}C$, $V_I = 38...72V$ unless otherwise specified.

Output

Characteristics		O an all the sec	Conditions		Output 1		11
Charact	teristics	Conditions		min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	$-T_{\rm C} = +25^{\circ}\text{C}, I_{\rm O} = 10^{\circ}$	14 V/ - 53 V/	6.19	6.22	6.25	V
VOi	Output adjust range ¹⁾	- 1°C - +23 °C, 1°C - 1°C				7.7	V
Vo	Output voltage tolerance band	Long term drift included	$I_O{=}0.1\ldots1.0\times I_O{}{\rm max}$	6.00		6.40	v
	Idling voltage	I _O =0 A				7.5	V
	Line regulation		V _I = 3860 V		5		mV
		IO=IOmax	V _I = 5072 V		5		IIIV
	Load regulation	$I_0 = 0.1 \dots 1.0 \times I_0 m$	ax, V _I = 53 V		50		mV
t _{tr}	Load transient recovery time	I _O =0.1 …1.0 × I _O ma	x V. – 53 V		100		μS
Vtr	Load transient voltage	load step = $0.5 \times I_{C}$			+200		mV
Vtr	Load transient voltage				-400		mV
T _{coeff}	Temperature coefficient ²⁾	$I_O = I_O max$, $T_C < T_C m$	ax	see PKG	4617 PIOA Tempera	ature characteristics	
t _r	Ramp-up time	I _O =	$0.1\ldots 0.9\times V_O$		15		ms
ts	Start-up time	0.1…1.0 × I _O max V _I = 53 V	From V _I connection to V _O = 0.9 \times V _{Oi}		25		ms
lo	Output current			0		10	А
Pomax	Max output power ³⁾	Calculated value			60		W
l _{lim}	Current limiting threshold	T _C < T _C max		11.6			А
I _{sc}	Short circuit current	$V_0 = 0.20.5 V, T_A$	=25°C		15		А
V _{Oac}	Output ripple	I _O =I _O max	20 Hz 5 MHz		60	100	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 Vp		50			dB
OVP	Over voltage protection	I _O > 0.1 × I _O max			8		V

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.

Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _O max, V _I = 53 V		86		%
Pd	Power dissipation	I _O = I _O max, V _I = 53 V		10		W

PKG 4428 PI

$T_C = -30...+90^{\circ}C$, $V_I = 38...72V$ unless otherwise specified. $I_{O1 nom} = 6.0$ A, $I_{O2 nom} = 4.0$ A.

Output

0		O an all this may			Output 1			Output	2	Unit
Charact	eristics	Conditions		min	typ	max	min	typ	max	Unit
Voi	Output voltage initial setting and accuracy	To = +25°C lo = lo	nom V. – 53 V	3.27	3.30	3.33	5.10	5.27	5.40	v
VOI	Output adjust range ¹⁾	- 10 - +20 0, 10 - 10	$T_{C} = +25 ^{\circ}C, I_{O} = I_{O} ^{nom}, V_{I} = 53 V$			3.70	4.60		5.90	v
Vo	Output voltage tolerance band	Long term drift included	$I_{O} = 0.21.0 \times I_{O}$ nom $I_{O1} = 1.5 \times I_{O2}$	3.10		3.40	4.90		5.40	v
	Idling voltage	I _O =0 A				4.0			7.0	V
	Line regulation		V _I = 3860 V		5			15		mV
	Line regulation	I _O =I _O nom	V _I = 5072 V		5			15		
	Load regulation	$I_{O 1} = 0.1 \dots 1.0 \times I_{O}$ $V_{I} = 53 V$	1nom, I _{O2} =I _{O2} nom,		15					mV
t _{tr}	Load transient recovery time		$I_0=0.11.0 \times I_{0.1nom}, V_1 = 53 V$ load step = 0.5× I ₀₁ nom, I ₀₂ = I ₀₂ nom		100			100		μs
V _{tr}	Lood transient veltage				+150			+150		mV
Vtr	Load transient voltage				-200			-200		mV
T _{coeff}	Temperature coefficient ²⁾	I _O =I _O nom, T _C <t<sub>C m</t<sub>	ax	see PKG 4428 PI Temperature characteristics				stics		
t _r	Ramp-up time	I _O =	$0.1\ldots 0.9\times V_O$		10			10		ms
ts	Start-up time	$0.11.0 \times I_{O}max$ V _I = 53 V	From V _I connection to V _O = $0.9 \times V_{Oi}$		15			15		ms
lo	Output current			0		9.6	04)		6.4	А
Pomax	Max total output power ³⁾	Calculated value				mi	n 40			w
l _{lim}	Current limiting threshold	T _C < T _C max	T _C < T _C max		min 1.02 × P _O max ⁵⁾					
I _{sc}	Short circuit current	V _O =0.2 0.5 V, T,	_A =25°C, R _{SC} >0.1 Ω		15					А
V _O ac	Output ripple	I _O =I _O nom	20 Hz5 MHz		100	150		100	150	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V _F	ve, 1 V _P -p, V _I = 53 V _{b-p/V_{Op-p}))}	60			60			dB
OVP	Over voltage protection	I _O > 0.1 × I _O max			4					v

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.

³⁾ See also Typical Characteristics, Power derating.
⁴⁾ At full load on output 1 output 2 must have min 0.6 A load.

⁵⁾I_{lim} on each output is set by the total load.

Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	$I_{O} = I_{Onom}, V_{I} = 53 V$		84		%
Pd	Power dissipation	$I_O = I_O \text{ nom}, V_I = 53 \text{ V}$		7.6		W

PKG 4623 PI

 $T_C = -30...+90^{\circ}C$, $V_I = 38...72V$ unless otherwise specified. $I_{O1 nom} = 2.5 A$, $I_{O2 nom} = 2.5 A$.

Output

vieties	Conditions		Output 1			Output 2			Unit
eristics	Conditions		min	typ	max	min	typ	max	Unit
Output voltage initial setting and accuracy	To = +25°C, lo = lo	nom V/ = 53 V	11.94	12.10	12.26	11.94	12.10	12.26	v
Output adjust range ¹⁾		ini, vj = 00 v	10.80		13.20	10.80		13.20	V
Output voltage tolerance band	Long term drift included	$I_0 = 0.1 \dots 1.0 \times I_0$ nom $I_{01} = I_{02}$	11.70		12.50	11.70		12.60	v
Idling voltage	I _O =0 A	•			12.65			20	V
		V _I = 3860 V		10			10		
Line regulation	IO=IOuom	V _I = 5072 V		10			10		mV
Load regulation	$I_{O1}=0.11.0 \times I_{O1}$ V _I = 53 V			20					mV
Load transient recovery time		I_{O} =0.11.0 × I_{O} nom, V_{I} = 53 V		100			100		μs
Load transient voltage	load step = 0.5× I _C	pnom, $I_{O1} = I_{O2}$		+850			+850		mV
				-850			-850		mV
Temperature coefficient ²⁾	I _O =I _O nom, T _C <t<sub>C m</t<sub>	ax	see PKG 4623 PI Temperature characteristics				stics		
Ramp-up time	I _O =	$0.1\ldots 0.9\times V_0$		10			10		ms
Start-up time	0.11.0 × I _O max V _I = 53 V	From V _I connection to V _O = $0.9 \times V_{Oi}$		30			30		ms
Output current			0		4.0	0		4.0	А
Max total output power ³⁾	Calculated value				mi	n 60			w
Current limiting threshold	T _C < T _C max	T _C < T _C max			min 1.02	× P _{O max} '	4)		
Short circuit current	V _O =0.20.5 V, T _A	=25°C, R _{SC} >0.1Ω		7			7		A
Output ripple	IO=IOnom	20 Hz 5 MHz		100	150		100	150	mV _{p-p}
Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V _F	ve, 1 V _P -p, V _I = 53 V _D -p/V _{O P} -p))	43			43			dB
Over voltage protection	I _O > 0.1 × I _O max			14.5					v
	setting and accuracy Output adjust range ¹⁾ Output voltage tolerance band Idling voltage Line regulation Load regulation Load transient recovery time Load transient voltage Temperature coefficient ²⁾ Ramp-up time Start-up time Output current Max total output power ³⁾ Current limiting threshold Short circuit current Output ripple Supply voltage rejection (ac)	Output voltage initial setting and accuracy $T_{C} = +25 ^{\circ}C, I_{O} = I_{O}$ Output adjust range1)Long term drift includedOutput voltage tolerance band $I_{O} = 0 A$ Idling voltage $I_{O} = 0 A$ Line regulation $I_{O1}=0.11.0 \times I_{O1}$ Load regulation $I_{O1}=0.11.0 \times I_{O1}$ Load transient recovery time $I_{O}=0.11.0 \times I_{O1}$ Load transient voltage $I_{O}=0.11.0 \times I_{O1}$ Load transient voltage $I_{O}=0.11.0 \times I_{O1}$ Start-up time $I_{O}=0.11.0 \times I_{O1}$ Start-up time $I_{O}=0.11.0 \times I_{O1}$ Max total output power ³)Calculated valueCurrent limiting threshold $T_{C} < T_{C} \max$ Short circuit current $V_{O}=0.20.5V, T_{A}$ Output ripple $I_{O}=I_{O1}$ Supply voltage rejection (ac) $f = 100 Hz sine was(SVR = 20 \log (1 Mr))$	$\begin{array}{ c c c c } \hline \text{Output voltage initial setting and accuracy}} & T_{C} = +25^{\circ}\text{C}, \ _{O} = _{O} \text{, } V_{I} = 53 \ \text{V}} \\ \hline \text{Output voltage tolerance band} & \text{Long term drift included}} & _{O} = 0.1 \dots 1.0 \times _{O} \text{nom}} \\ \hline \text{Idling voltage band} & I_{O} = 0 \ \text{A}} \\ \hline \text{Line regulation} & I_{O} = _{O} \text{O} \ \text{A}} \\ \hline \text{Load regulation} & I_{O} = _{O} \text{nom}} & \frac{V_{I} = 38 \dots 60 \ \text{V}}{V_{I} = 50 \dots 72 \ \text{V}} \\ \hline \text{Load regulation} & I_{O} = 0.1 \dots 1.0 \times _{O} \text{nom}, \ I_{O} = _{O} \text{nom}}, \\ \hline \text{Load transient recovery time} & I_{O} = 0.1 \dots 1.0 \times _{O} \text{nom}, \ V_{I} = 53 \ \text{V} \\ \hline \text{Load transient voltage} & I_{O} = 0.1 \dots 1.0 \times _{O} \text{nom}, \ V_{I} = 53 \ \text{V} \\ \hline \text{Load transient voltage} & I_{O} = 0.5 \times _{O} \text{nom}, \ I_{O} = 1 \ \text{O} \ \text{D} \\ \hline \text{Load transient voltage} & I_{O} = 0.5 \times _{O} \text{nom}, \ I_{O} = 1 \ \text{O} \ \text{D} \\ \hline \text{Temperature coefficient}^{(2)} & I_{O} = I_{O} \text{nom}, \ T_{C} < T_{C} \text{max} \\ \hline \text{Start-up time} & I_{O} = \\ \hline \text{Max total output power}^{(3)} & \hline \text{Calculated value} \\ \hline \text{Current limiting threshold} & $T_{C} < T_{C} \text{ max} \\ \hline \text{Short circuit current} & V_{O} = 0.2 \dots 0.5 \ \text{V}, \ T_{A} = 25^{\circ} \text{C}, \ \text{R}_{S} > 0.1 \Omega \\ \hline \text{Output ripple} & I_{O} = I_{O} \text{nom} \\ \hline \text{Supply voltage region (ac)} & $f = 100 \ \text{Hz sine wave, } 1 \ \text{V}_{P} \text{-} \text{P}, \ \text{V}_{I} = 53 \ \text{V} \\ \hline \end{array}$	$\begin{array}{ c c c c } \hline \mbox{min} \\ \hline \mbox{output voltage initial setting and accuracy}} \\ \hline \mbox{Output adjust range^{1)}} \\ \hline \mbox{Output voltage constrained band} \\ \hline \mbox{Output voltage constrained band} \\ \hline \mbox{Icherance band} \\ \hline Icherance $	$\begin{array}{ c c c c } \hline \mbox{Number link} Number li$	$\begin{array}{ c c c } \mbox{ind} ind$	noisenoisenoisenoisenoisenoisenoiseOutput voltage initial setting and accuracy $T_{C} = +25^{\circ}C, _{O} = _{O = 0 \land N}, V = 53 V$ 11.9412.1012.2611.94Output voltage tolerance band $Long term driftlocleddd _{O} = 0.1 \dots 1.0 \times _{O nom} _{O1} = _{O2}11.7012.5011.70Iding voltagetolerance band _{O} = 0 \land NV_{I} = 3860 \lor N11.7012.5011.70Iding voltagetolerance band _{O} = 0 \land NV_{I} = 3860 \lor N101010Line regulation _{O} = 0 \land NV_{I} = 3860 \lor N101010Load regulation _{O} = 0.1 \dots 1.0 \times _{O nom}V_{I} = 53 \lor NV_{I} = 53 \lor N2010Load transientrecovery time _{O} = 0.1 \dots 1.0 \times _{O nom}, V_{I} = 53 \lor N100 \lor V_{O}1010Load transient voltage _{O} = 0.1 \dots 1.0 \times _{O nom}, V_{I} = 53 \lor N100 \lor V_{O}1010Load transient voltage _{O} = 0.1 \dots 1.0 \times _{O nom}, V_{I} = 53 \lor N100 \lor V_{O}1010Load transient voltage _{O} = 0.1 \dots 1.0 \times _{O nom}, V_{I} = 53 \lor N100 \lor V_{O}1010Load transient voltage _{O} = 0.1 \dots 0.9 \times V_{O}10 \lor V_{O}10 \lor V_{O}1010Ramp-up time _{O} = 0.1 \dots 0.9 \times V_{O}10 \lor V_{O}10 \lor V_{O}10 \lor V_{O}1010Start-up time _{O} = 0.1 \dots 0.9 \times V_{O}0 \lor V_{O}10 \lor V_{O}10 \lor V_{O}10 \lor V_{O}$	initial setting and accuracy initial setting and accuracy $\Gamma_{\rm C}$ +25°C, $I_{\rm O}$ = $I_{\rm SS}$ V 11.94 12.10 12.26 11.94 12.10 12.26 11.94 12.10 12.26 11.94 12.10 12.26 11.94 12.10 12.26 11.94 12.10 12.26 11.94 12.10 12.26 11.70 12.50 11.70 12.50 11.70 12.50 11.70 12.50 11.70 12.50 11.70 12.50 11.70 10	index <th< td=""></th<>

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.
 See also Typical Characteristics, Power derating.
 I_{lim} on each output is set by the total load.

Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	$I_O = I_O$ nom, $V_I = 53$ V		89		%
Pd	Power dissipation	$I_O = I_O$ nom, $V_I = 53$ V		7.4		w

PKG 4625 PI

$T_C = -30...+90^{\circ}C$, $V_I = 38$...72V unless otherwise specified. $I_{O1 nom} = 2.0 \text{ A}$, $I_{O2 nom} = 2.0 \text{ A}$.

Output

Charac	toviation	Conditions			Output 1			Output	2	Unit
Charac	teristics	Conditions		min	typ	max	min	typ	max	Unit
Voi	Output voltage initial setting and accuracy	T _C = +25°C, l _O = l _O	nom VI – 53 V	14.90	15.00	15.10	14.90	15.00	15.10	v
VOI	Output adjust range ¹⁾					16.50	12.00		16.50	v
Vo	Output voltage tolerance band	Long term drift included	$I_0 = 0.1 \dots 1.0 \times I_0$ nom $I_{01} = I_{02}$	14.20		15.65	14.20		15.65	v
	Idling voltage	I _O =0 A				17			26	V
			V _I = 3860 V		15			15		
	Line regulation	I _O =I _O nom	V _I = 5072 V		15			15		mV
	Load regulation	$I_{O1}=0.11.0 \times I_{O1}$ VI = 53 V	$I_{O1}=0.11.0 \times I_{O1}$ nom, $I_{O2}=I_{O2}$ nom, VI = 53 V		50		50			mV
t _{tr}	Load transient recovery time		$I_{O}{=}0.1 \dots 1.0 \times I_{Onom}, V_{I} = 53 \text{ V}$ load step = 0.5× I_{Onom}, I_{O1} = I_{O2}		150			150		μs
Vtr	Load transient voltage	load step = 0.5× I _C			+750			+750		mV
vtr	Load transient voltage				-1300			-1300		mV
T _{coeff}	Temperature coefficient ²⁾	I _O =I _O nom, T _C <t<sub>C m</t<sub>	ax	see PKG 4625 PI Temperature characteristics				stics		
t _r	Ramp-up time	I _O =	$0.1\ldots 0.9\times V_O$		10			10		ms
ts	Start-up time	0.11.0 × I_0 max V _I = 53 V	From V _I connection to V _O = $0.9 \times V_{Oi}$		15			15		ms
lo	Output current		•	0		3.2	0		3.2	А
P _O max	Max total output power ³⁾	Calculated value				mi	n 60			w
l _{lim}	Current limiting threshold	T _C < T _C max	T _C < T _C max			min 1.02	× P _{O max}	4)		
I _{sc}	Short circuit current	V _O =0.20.5 V, T _A	=25°C, R _{SC} >0.1Ω		9			9		A
V _{O ac}	Output ripple	I _O =I _O nom	20 Hz 5 MHz		100	150		100	150	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V _F	ve, 1 V _P -p, V _I = 53 V _D -p/V _{OP} -p))	43			43			dB
OVP	Over voltage protection	I _O > 0.1 × I _O max			18					v

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.

³⁾ See also Typical Characteristics, Power derating.

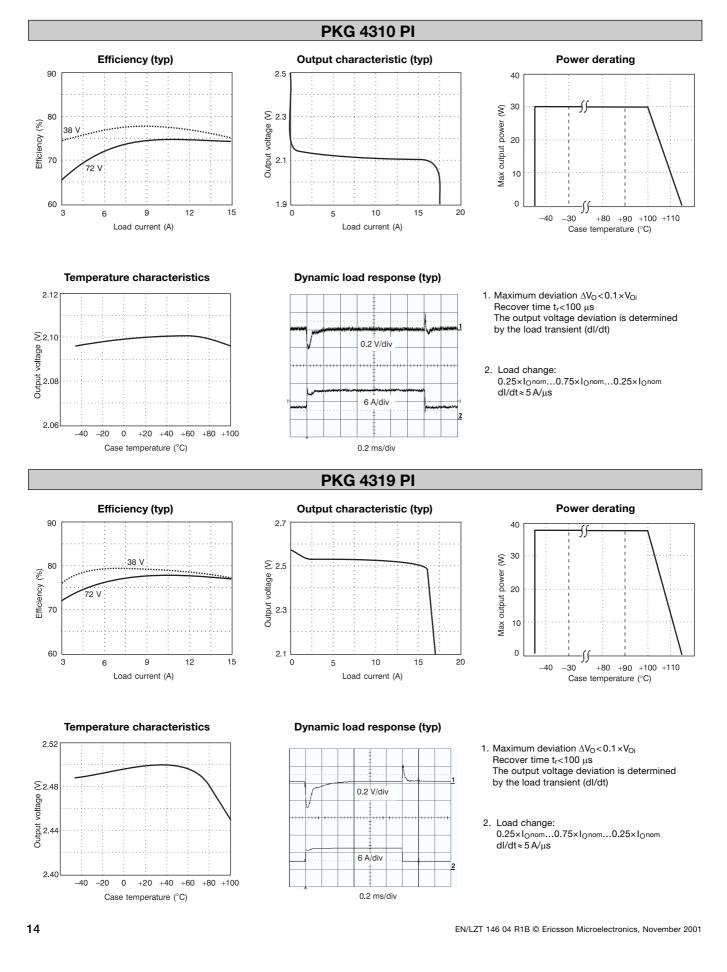
⁴⁾ I_{lim} on each output is set by the total load.

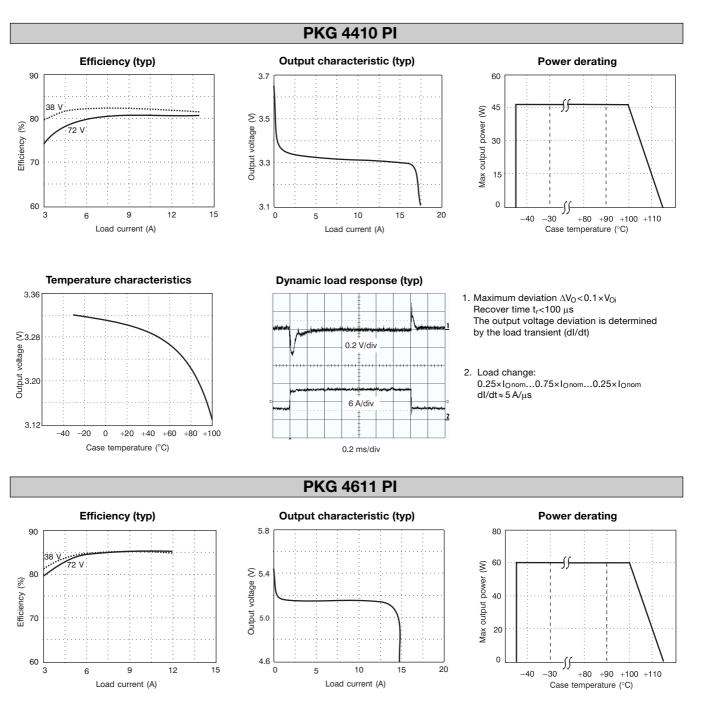
Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	$I_O = I_{Onom}, V_I = 53 V$		89		%
Pd	Power dissipation	$I_O = I_O$ nom, $V_I = 53$ V		7.4		w

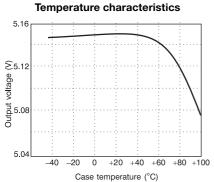
PKG 4627 PI

 $T_C = -30...+90^{\circ}C$, $V_I = 38...72V$ unless otherwise specified. $I_{O1 nom} = 6.0 \text{ A}$, $I_{O2 nom} = 2.5 \text{ A}$.

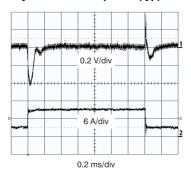
Output

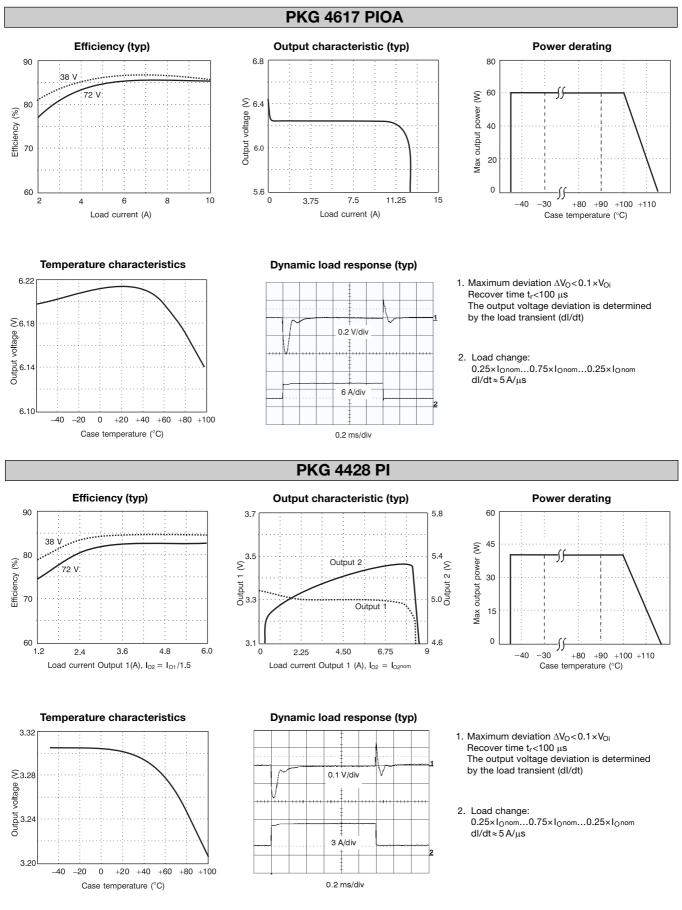

Charact		Conditions			Output 1			Output	2	Unit
Charact	eristics	Conditions		min	typ	max	min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	$-T_{\rm C} = +25 ^{\circ}{\rm C}, I_{\rm O} = I_{\rm O}$	nom V/ = 53 V	5.11	5.15	5.19	11.92	12.10	12.28	v
VOI	Output adjust range ¹⁾	- 10 - +20 0, 10 - 10	noni, vj = 35 v	4.63		5.67	10.80		13.20	v
Vo	Output voltage tolerance band	Long term drift included	$I_0 = 0.1 \dots 1.0 \times I_0$ nom $I_{01} = 2.4 \times I_{02}$	5.00		5.25	11.70		12.60	v
	Idling voltage	I _O =0 A				5.45			20	v
		V _I = 38			12			25		
	Line regulation	I _O =I _O nom	V _I = 5072 V		4			8		- mV
	Load regulation	$I_{O 1}=0.11.0 \times I_{O}$ $V_{I}=53 V$	$I_{01}=0.11.0 \times I_{01}$ nom, $I_{02}=I_{02}$ nom, $V_{I}=53$ V		10					mV
t _{tr}	Load transient recovery time		I _O =0.11.0 × I _O nom, V _I = 53 V					100		μs
V _{tr}	Load transient voltage		load step = 0.5× I _{Onom}		+350			+850		mV
vtr	Load transient voltage				-400			-850		mV
T _{coeff}	Temperature coefficient ²⁾	I _O =I _O nom, T _C <t<sub>C m</t<sub>	ax	see PKG 4627 PI Temperature characteristics				stics		
tr	Ramp-up time	I _O =	$0.1\ldots 0.9\times V_O$		10			10		ms
ts	Start-up time	$\begin{array}{l} 0.1 \dots 1.0 \times I_O \text{max} \\ V_I = 53 \text{ V} \end{array}$	From V _I connection to V _O = 0.9 \times V _{Oi}		30			30		ms
lo	Output current			0		9.0	0		3.0	А
Pomax	Max total output power ³⁾	Calculated value				mi	n 60			w
l _{lim}	Current limiting threshold	T _C < T _C max	T _C < T _C max			min 1.02	× P _O max ⁴⁾			
I _{SC}	Short circuit current	V _O =0.2 0.5 V, T	_A =25°C, R _{SC} >0.1 Ω		17			7		А
Voac	Output ripple	I _O =I _O nom	20 Hz5 MHz		100	150		100	150	mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 Vr	ve, 1 Vp-p, V _I = 53 V p-p/V _{O p-p}))	43			35			dB
OVP	Over voltage protection	$I_0 > 0.1 \times I_0 max$			6					V

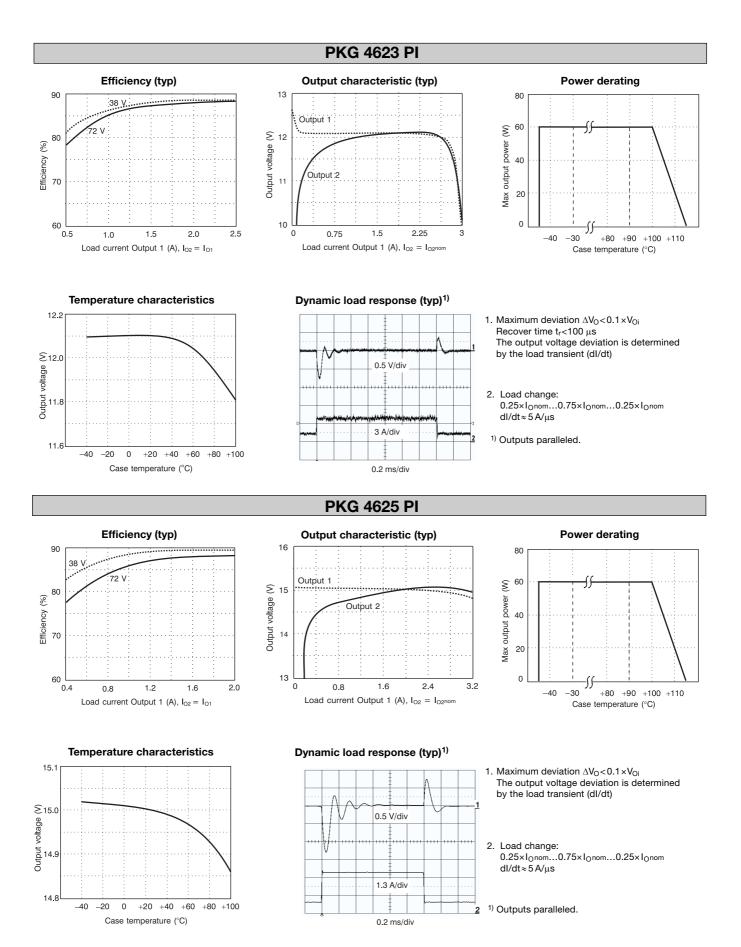

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.


³⁾ See also Typical Characteristics, Power derating.
 ⁴⁾ I_{lim} on each output is set by the total load.

Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _O nom, V _I = 53 V		88		%
Pd	Power dissipation	$I_O = I_O$ nom, $V_I = 53$ V		8		w


Typical Characteristics

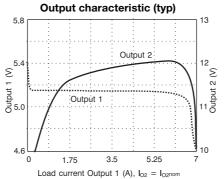

Dynamic load response (typ)

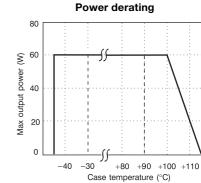


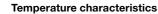
1. Maximum deviation $\Delta V_O < 0.1 \times V_{Oi}$ Recover time t_r<100 µs The output voltage deviation is determined by the load transient (dI/dt)

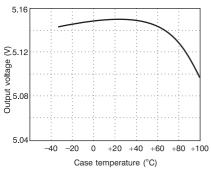
 Load change: 0.25×I₀nom...0.75×I₀nom...0.25×I₀nom dl/dt≈5A/µs

EN/LZT 146 04 R1B © Ericsson Microelectronics, November 2001

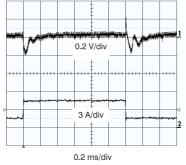





EN/LZT 146 04 R1B © Ericsson Microelectronics, November 2001

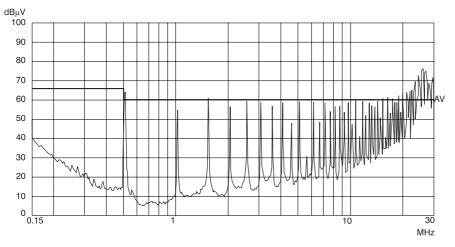

PKG 4627 PI

Efficiency (typ) 90 (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (72 V) (9)(9)



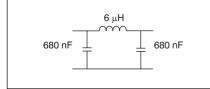
Dynamic	load	response	(typ)
---------	------	----------	-------

1. Maximum deviation $\Delta V_O < 0.1 \times V_{Oi}$ Recover time $t_r < 100 \ \mu s$ The output voltage deviation is determined by the load transient (dl/dt)

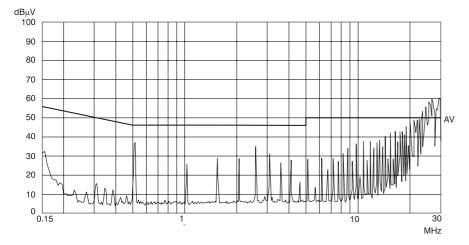

 Load change: 0.25×I_Onom...0.75×I_Onom...0.25×I_Onom dI/dt≈5A/µs

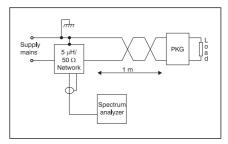
EMC Specifications

The PKG power module is mounted on a double sided printed circuit board (PB) with ground-plane during EMC measurements.


The fundamental switching frequency is 510 kHz ±5% @ V_{I} = 53 V, I_{O} = (0.1...1.0) \times I_{O} max.

Conducted EMI Input terminal value (typ)




External Filter (class B)

Required external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

The capacitors are of ceramic type. The low ESR is critical for the result.

Test Set-up according to CISPR publ. 1A.

Radiated EMS (Electro-Magnetic Fields)

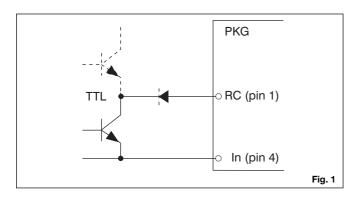
Radiated EMS is measured according to test methods in IEC Standard publ. 801-3. No deviation outside the V_O tolerance band will occur under the following conditions:

Frequency range	Voltage level
0.01200 MHz	3 Vrms/m
2001,000 MHz	3 Vrms/m
112 GHz	10 Vrms/m

EFT

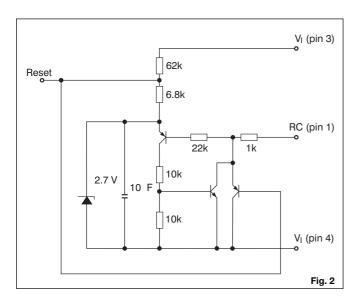
Electrical Fast Transients on the input terminals may cause output deviations outside what is tolerated by the electronic circuits, i.e. $\pm 5\%$.

The PKG power module can withstand EFT levels of 0.5 kV keeping V_O within the tolerance band and 2.0 kV without destruction. Tested according to IEC publ. 801-4.


Output Ripple & Noise (Voac)

Output ripple is measured as the peak to peak voltage of the fundamental switching frequency.

Operating information


Remote Control (RC)

Remote turn-on and turn-off can be realized by using the RC-pin. Normal operation is achieved if pin 1 is open (NC). If pin 1 is connected to pin 4 the PKG power module turns off. To ensure safe turn-off the voltage difference between pin 1 and 4 shall be less than 1.0 V. RC is TTL open collector compatible (see fig. 1).

Over Voltage Protection (OVP)

The PKG series has an internal Over Voltage Protection circuitry. The circuitry will detect over voltage conditions on the output and stop the power module operation. During OVP conditions there are continuous attempts to start up (non-latching mode). If latching mode is preferred an external circuit can be used to change the function and make the output remain in off mode after over voltage detection. (The OVP level can be found in the output data section.)

Turn-off Input Voltage (TOA)

The power module monitors the input voltage and will turn on and turn off at predetermined levels. The levels can be decreased by means of an external resistor connected between pin 2 and pin 3. A 0.5 M Ω resistor will decrease the turn-off input voltage approximately 10%.

Output Voltage Adjust (Vadj)

To decrease the output voltage the resistor should be connected between pin 10 and pin 9 (+ Out 1). To increase the output voltage the resistor should be connected between pin 10 and pin 8 (–Out1). Output voltage, V_O, can be adjusted by using an external resistor. A 0.1 $M\Omega$ resistor will change V_O approximately 5%.

Maximum Capacitive Load

The PKG series has no limitation of maximum connected capacitance on the output, however the power module may operate in current limiting mode during start-up, affecting the ramp-up and the start-up time if large capacitance values are connected. For optimum performance we recommend a maximum of 100 μ F/A of I_O for dual outputs. Connect capacitors at the point of load for best performance.

Parallel Operation

The load regulation characteristics and temperature coefficients of the PKG DC/DC Power Modules are designed to allow parallel operation. Paralleling of several modules is easily accomplished by connection of the output voltage terminal pins. The connections should be symmetrical, i.e. the resistance between the output terminal and the common connection point of each module should be equal. Good paralleling performance is achieved if you allow the resistance to be 10 m Ω . 10 m Ω equals 50 mm (2 in) of 35 µm (1 oz/ft²) copper with a trace width of 2.5 mm (0.1 in).

It is recommended not to exceed $P_O = n \times 0.8 \times P_{Omax}$, where P_{Omax} is the maximum converter output power and n the number of paralleled converters, in order to avoid overloading any of the converters and thereby decreasing the reliability.

Paralleling performance may be further improved by voltage matching. Voltage matching is accomplished by using the Output Adjust function and trim the outputs to the same voltage.

Current Limiting Protection

The output power is limited at loads above the output current limiting threshold (I_{lim}), specified as a minimum value.

Input and Output Impedance

Both the source impedance of the power feeding and the load impedance will interact with the impedance of the DC/DC power module. It is most important to have the ratio between L and C as low as possible, i.e. a low characteristic impedance, both at the input and output, as the power modules have a low energy storage capability. Use an electrolytic capacitor across the input or output if the source or load inductance is larger than 10 μ H. Their equivalent series resistance together with the capacitance acts as a lossless damping filter. Suitable capacitor values are in the range 10–100 μ E.

Quality

Reliability

Meantime between failure (MTBF) is calculated to >1.7 million hours at full output power and a case temperature of +75°C ($T_A = +40$ °C), using the Ericsson failure rate data system. The Ericsson failure rate data system is based on field failure rates and is continously updated. The data corresponds to actual failure rates of conponent used in Information Technology and Telecom equipment in temperature contledenvironments (TA =-5...+65°C). The data is considered to have a confidence level of 90%. For more information see Design Note 002.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, 6σ and SPC, are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out by a burn-in procedure and an ATE-based final test.

Conservative design rules, design reviews and product qualifications, as well as high competence of an engaged work force, contribute to the high quality of our products.

Warranty

Ericsson Microelectronics warrants to the original purchaser or end user that the products conform to this Data Sheet and are free from material and workmanship defects for a period of five (5) years from the date of manufacture, if the product is used within specified conditions and not opened. In case the product is discontinued, claims will be accepted up to three (3) years from the date of the discontinuation. For additional details on this limited warranty we refer to Ericsson Microelectronics AB's "General Terms and Conditions of Sales", or individual contract documents.

Limitation of Liability

Ericsson Microelectronics does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Microelectronics. These products are sold only according to Ericsson Microelectronics' general conditions of sale, unless otherwise confirmed in writing. Specifications subject to change without notice.

Product Program

Vı	V ₀ /I ₀ max			
	Output 1	Output 2	P _O max	Ordering No.
48/60 V	2.1 V/14.5 A 2.5 V/15 A 3.3 V/14 A 5 V/12 A 6.2 V/10 A 3.3 V/9.6 A 12 V/4 A 15 V/3.2 A 5 V/9 A	5 V/6.4 A 12 V/4 A 15 V/3.2 A 12 V/3 A	30 W 38 W 46 W 60 W 60 W 40 W 60 W 60 W 60 W	PKG 4310 PI PKG 4319 PI PKG 4410 PI PKG 4611 PI PKG 4617 PIOA PKG 4428 PI PKG 4623 PI PKG 4625 PI PKG 4627 PI

Ericsson Microelectronics SE-164 81 KISTA, Sweden Phone: +46 8 757 5000 www.ericsson.com/microelectronics

For local sales contacts, please refer to our website or call: Int. +46 8 757 4700, Fax: +46 8 757 4776 The latest and most complete information can be found on our website!

Data Sheet

EN/LZT 146 04 R1B © Ericsson Microelectronics AB, November 2001